题目内容
如果将二次函数的图象沿y轴向下平移1个单位,再向右平移3个单位,那么所得图象的函数解析式是 .
计算:(每小题4分,共16分)
(1)
(2)
(3)
(4)
(本题7分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米30元,试问用该草坪铺满这块空地共需花费多少元?
如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=3,则点D到AB的距离是 .
(16分)已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.
(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.
如图,抛物线的顶点P的坐标是(1,﹣3),则此抛物线对应的二次函数有( )
A.最大值1 B.最小值﹣3 C.最大值﹣3 D.最小值1
(12分)问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,求AP+BP的最小值.
尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有=,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
自主探索:在“问题提出”的条件不变的情况下, AP+BP的最小值为 .
拓展延伸:已知扇形COD中,∠COD=90º,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.
如图,半径为3的⊙P在第一象限,动点A沿着⊙P运动一周,在点A运动的同时,作点A关于原点O的对称点B,再以AB为边作等边△ABC,点C在第二象限,点C 随点A运动所形成的图形的面积为( )
A. B. C. D.
计算:
(1)··