题目内容

精英家教网如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式.
分析:根据切线长定理得到BF=AD=x,CE=CB=y,则DC=DE+CE=x+y,在直角△DFC中根据勾股定理,就可以求出y与x的关系.
解答:精英家教网解:作DF⊥BN交BC于F;
∵AM、BN与⊙O切于点定A、B,
∴AB⊥AM,AB⊥BN.
又∵DF⊥BN,
∴∠A=∠B=∠BFD=90°,
∴四边形ABFD是矩形,
∴BF=AD=xDF=AB=12,
∵BC=y,
∴FC=BC-BF=y-x;
∵DE切⊙O于E,
∴DE=DA=x CE=CB=y,
则DC=DE+CE=x+y,
在Rt△DFC中,
由勾股定理得:(x+y)2=(x-y)2+122
整理为y=
36
x

∴y与x的函数关系式是y=
36
x
点评:本题主要考查了切线长定理.梯形的面积可以通过作高线转化为直角三角形的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网