题目内容
在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,
),直线l2的函数表达式为
,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.
【小题1】求直线l1的函数表达式;
【小题2】 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=
时a的值.
【小题3】当⊙C和直线l2不相离时,已知⊙C的
半径R=
,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.![]()
![]()
【小题1】![]()
【小题2】![]()
【小题3】![]()
解析
练习册系列答案
相关题目