题目内容
对于一次函数y=
x-
,若-2≤x≤2,则y的取值范围是________.
-
≤y≤0
分析:在一次函数里,只要给定自变量的取值,就可以求出对应的函数值,然后根据函数的增减性确定最大值与最小值即可.
解答:当x=-2时,y=-
;
当x=2时,y=0.
而函数中k=
>0,
∴y随x的增大而增大,
∴y的取值范围是-
≤y≤0.
故填空答案:-
≤y≤0.
点评:本题考查的知识点为:在一次函数里,只要给定自变量的取值,把自变量的最大值与最小值代入即可求得函数值的最大值与最小值.
分析:在一次函数里,只要给定自变量的取值,就可以求出对应的函数值,然后根据函数的增减性确定最大值与最小值即可.
解答:当x=-2时,y=-
当x=2时,y=0.
而函数中k=
∴y随x的增大而增大,
∴y的取值范围是-
故填空答案:-
点评:本题考查的知识点为:在一次函数里,只要给定自变量的取值,把自变量的最大值与最小值代入即可求得函数值的最大值与最小值.
练习册系列答案
相关题目