题目内容

作业宝如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是


  1. A.
    作业宝
  2. B.
    作业宝
  3. C.
    作业宝
  4. D.
    作业宝
D
分析:根据三角形面积得出S△PAB=PE•AB;S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ,进而得出y=,即可得出答案.
解答:解:连接PQ,作PE⊥AB垂足为E,
∵过Q作QM⊥PA于M,QN⊥PB于N
∴S△PAB=PE•AB;
S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ,
∵矩形ABCD中,P为CD中点,
∴PA=PB,
∵QM与QN的长度和为y,
∴S△PAB=S△PQB+S△PAQ=QN•PB+PA•MQ=PB(QM+QN)=PB•y,
∴S△PAB=PE•AB=PB•y,
∴y=,∵PE=AD,∴PE,AB,PB都为定值,
∴y的值为定值,符合要求的图形为D,
故选:D.
点评:此题主要考查了动点函数的图象,根据已知得出y=,再利用PE=AD,PB,AB,PB都为定值是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网