题目内容
2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为 .
如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A = 70°,则∠BOC的度数为( )
A.100° B.110° C.120° D.130°
已知:m、n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+2m= .
在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)已知点D(m,m﹣2)在第三象限的抛物线上,求点D关于直线AB对称的点E的坐标;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,求出相应点Q的坐标.
(1)计算:﹣6sin60°+()﹣1﹣(﹣2)0
(2)先化简(1+),再求值,其中x=﹣3.
不等式组的解集在数轴上可表示为( )
A. B.
C. D.
如图1,二次函数y=a(x2﹣x﹣6)(a≠0)的图象过点C(1,﹣),与x轴交于A,B两点(点A在x轴的负半轴上),且A,C两点关于正比例函数y=kx(k≠0)的图象对称.
(1)求二次函数与正比例函数的解析式;
(2)如图2,过点B作BD⊥x轴交正比例函数图象于点D,连接AC,交正比例函数的图象于点E,连接AD,CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个点到达终点时,另一个点随之停止运动,连接PQ,QE,PE,设运动时间为t秒,是否存在某一刻,使PE,QE分别平分∠APQ和∠PQC?若存在,求出t的值;若不存在,请说明理由.
方程x2﹣3x+2=0的根是 .
一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.
(1)求点B的坐标及反比例函数的表达式;
(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.