题目内容
(1)证明:△ABC∽△DBE;
(2)若∠CAB=30°,AF=
| 3 |
分析:(1)求出∠ACB=∠DEB,∠A=∠D,根据相似三角形的判定定理求出即可;
(2)利用弧AC的长度得出底面圆的周长,进而得出圆锥的半径.
(2)利用弧AC的长度得出底面圆的周长,进而得出圆锥的半径.
解答:(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°.
∵CD⊥AB,
∴∠DEB=90°.
∴∠ACB=∠DEB.
又∵∠A=∠D,
∴△ACB∽△DEB.
(2)∵OA=OC,
∴∠ACO=∠CAB=30°.
∴∠AOC=120°.
∵OF⊥AC,
∴∠AFO=90°.
在Rt△AFO中,cos30°=
=
,
∴AO=2.
∴
的长为
•π•2=
π.
∴圆锥的底面半径=
=
.
∴∠ACB=90°.
∵CD⊥AB,
∴∠DEB=90°.
∴∠ACB=∠DEB.
又∵∠A=∠D,
∴△ACB∽△DEB.
(2)∵OA=OC,
∴∠ACO=∠CAB=30°.
∴∠AOC=120°.
∵OF⊥AC,
∴∠AFO=90°.
在Rt△AFO中,cos30°=
| AF |
| OA |
| ||
| AO |
∴AO=2.
∴
| AC |
| 120 |
| 180 |
| 4 |
| 3 |
∴圆锥的底面半径=
| ||
| 2π |
| 2 |
| 3 |
点评:此题主要考查了圆周角定理以及圆锥的性质和相似三角形的判定,正确区分圆锥与展开图的对应情况是解决问题的关键.
练习册系列答案
相关题目
| A、1cm | B、2cm | C、3cm | D、4cm |