题目内容

如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F?H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是


  1. A.
  2. B.
  3. C.
  4. D.
B
分析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案.
解答:DF=x,正方形ABCD与正方形EFGH重叠部分的面积为y
①y=DF2=x2(0≤x<);
②y=1(≤x<2);
③∵BH=3-x
∴y=BH2=x2-3x+9(2≤x<3).
综上可知,图象是
故选B.
图:①





点评:解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网