题目内容

(2011•太原二模)如图是两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC=2,则这块直角三角板顶点A、A′之间的距离等于
1
1
分析:连接AA′,先由点M是线段AC、线段A′C′的中点可知,AM=MC=A′M=MC′=1,故可得出∠MCA′=∠MA′C=30°,故可得出∠MCB′的度数,根据四边形内角和定理可得出∠C′MC的度数,进而可判断出△AA′M的形状,进而得出结论.
解答:解:连接AA′,
∵点M是线段AC、线段A′C′的中点,AC=2,
∴AM=MC=A′M=MC′=1,
∵∠MA′C=30°,
∴∠MCA′=∠MA′C=30°,
∴∠MCB′=180°-30°=150°,
∴∠C′MC=360°-(∠MCB′+∠B′+∠C′)=180°-(150°+60°+90°)=60°,
∴∠AMA′=∠C′MC=60°,
∴△AA′M是等边三角形,
∴AA′=AM=1.
故答案为:1.
点评:本题考查的是等边三角形的判定与性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网