题目内容

如图,在?ABCD中,点E、F分别在BC、CD边上,BF=DE,AG⊥BF,AH⊥DE,垂足分别为G、H.求证:AG=AH.

证明:连接AE、AF,
设△AED的AD边上的高为h,
∵S△ADE=AD•h,S□ABCD=AD•h,
∴S△ADE=S□ABCD
同理:S△ABF=S□ABCD
∴S△ADE=S△ABF
∵AG⊥BF,AH⊥DE,
∴S△ADE=DE•AH,S△ABF=BF•AG,
DE•AH=BF•AG,
∵BF=DE,
∴AG=AH.
分析:连接AE、AF,求出△AED、△ABF的面积都等于?ABCD的面积的,再根据三角形的面积公式证明即可.
点评:本题考查了平行四边形的性质,三角形的面积,求出△AED、△ABF的面积相等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网