题目内容
7.(1)求证:△ACD≌△BAE;
(2)求∠AOB的度数.
分析 (1)根据等边三角形的性质求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根据SAS推出全等即可;
(2)根据全等三角形的性质求出∠CAD=∠ABE,根据三角形外角性质求出∠AOE=∠BAC=60°,即可得出答案.
解答 (1)证明:∵△ABC是等边三角形,
∴∠BAC=∠C=60°,BC=AC,
∵BD=CE,
∴BC-BD=AC-CE,
∴AE=CD,
在△ACD和△BAE中
$\left\{\begin{array}{l}{AE=CD}\\{∠BAE=∠C=60°}\\{AB=AC}\end{array}\right.$
∴△ACD≌△BAE(SAS);
(2)解:∵△ACD≌△BAE,
∴∠CAD=∠ABE,
∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,
∴∠AOB=180°-60°=120°.
点评 本题考查了等边三角形的性质,全等三角形的性质和判定的应用,能求出△ACD≌△BAE是解此题的关键.
练习册系列答案
相关题目
19.下面计算正确的是( )
| A. | $\sqrt{3}$+$\sqrt{5}$=$\sqrt{8}$ | B. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | C. | $\sqrt{(-3)^{2}}$=-3 | D. | $\sqrt{7}$-$\sqrt{5}$=$\sqrt{2}$ |
16.如图,将一副三角尺按不同位置摆放,∠α与∠β互余的是( )
| A. | B. | ||||
| C. | D. |
17.下列各组中,不是同类项的是( )
| A. | 32与23 | B. | -3ab与ba | C. | 0.2a2b与$\frac{1}{5}{a^2}b$ | D. | a2b3与-a3b2 |