题目内容
【题目】如图,抛物线y=ax2+bx+c的对称轴是x=-1.且过点(
,0),有下列结论:
①abc>0;②a-2b+4c=0;③25a-10b+4c=0;④3b+2c>0;⑤a-bm≥(am-b);其中所有正确的结论有( )个.
![]()
A. 2个 B. 3个 C. 4个 D. 5个
【答案】A
【解析】由抛物线的开口向下可得:a<0;
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0;
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①正确;
直线x=-1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以
=-1,可得b=2a,a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,c>0,
∴-3a+4c>0,
即a-2b+4c>0,故②错误;
∵抛物线y=ax2+bx+c的对称轴是x=-1.且过点(
,0),
∴抛物线与x轴的另一个交点坐标为(-
,0),
当x=-
时,y=0,即a(-
)2-
b+c=0,
整理得:25a-10b+4c=0,故③正确;
∵b=2a,a+b+c<0,
∴
b+b+c<0,
即3b+2c<0,故④错误;
a-bm≥(am-b)
a-bm-am+b≥0
a(1-m)+b(1-m)≥0,
(1-m)(a+b)≥0,
因a+b<0,当m=0时,上述式子不成立,所以⑤错误.
综上,正确的答案为:①③.故选A.
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
![]()
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.