搜索
题目内容
当a=
1
1
时,函数y=x
3a-2
是正比例函数.
试题答案
相关练习册答案
分析:
根据正比例函数的定义,令3a-2=1即可.
解答:
解:由题意得:3a-2=1,
解得:a=1.
故答案为:1.
点评:
本题主要考查了正比例函数的定义,关键是掌握①正比例系数≠0,②自变量次数=1.
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
当m=
1
1
时,函数
y=(m+1)
x
m
2
+1
是二次函数.
(2012•达州)【问题背景】
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为
s,则s与x的函数关系式为:
s=-
x
2
+
1
2
x(x
>0),利用函数的图象或通过配方均可求得该函数的最大值.
【提出新问题】
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
【分析问题】
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:
y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
【解决问题】
借鉴我们已有的研究函数的经验,探索函数
y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数
y=2(x+
1
x
)
(x>0)的图象:
x
…
1
4
1
3
1
2
1
2
3
4
…
y
…
…
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数
y=2(x+
1
x
)
(x>0)有最
小
小
值(填“大”或“小”),是
4
4
.
(3)推理论证:问题背景中提到,通过配方可求二次函数
s=-
x
2
+
1
2
x(x
>0)的最大值,请你尝试通过配方求函数
y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,
x=(
x
)
2
〕
(2012•南昌模拟)绘制函数
y=x+
1
x
的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0; 列表--描点--连线,得到该函数的图象如图所示.
x
…
-4
-3
-2
-1
-
1
2
-
1
3
-
1
4
1
4
1
3
1
2
1
2
3
4
…
y
…
-4
1
4
-3
1
3
-2
1
2
-2
-2
1
2
-3
1
3
-4
1
4
4
1
4
3
1
3
2
1
2
2
2
1
2
3
1
3
4
1
4
…
观察函数图象,回答下列问题:
(1)函数图象在第
一、三
一、三
象限;
(2)函数图象的对称性是
C
C
A.既是轴对称图形,又是中心对称图形 B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形 D.既不是轴对称图形,也不是中心对称图形
(3)在x>0时,当x=
1
1
时,函数y有最
小
小
(大,小)值,且这个最值等于
2
2
;
在x<0时,当x=
-1
-1
时,函数y有最
大
大
(大,小)值,且这个最值等于
-2
-2
;
(4)方程
x+
1
x
=-2x+1
是否有实数解?说明理由.
问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:
s=-
x
2
+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:
y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数
y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数
y=2(x+
1
x
)
(x>0)的图象:
x
…
1/4
1/3
1/2
1
2
3
4
…
y
…
17
2
20
3
5
4
5
20
3
17
2
…
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数
y=2(x+
1
x
)
(x>0)有最
小
小
值(填“大”或“小”),是
4
4
.
(3)推理论证:问题背景中提到,通过配方可求二次函数
s=-
x
2
+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数
y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,
x=(
x
)
2
〕
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案