题目内容
若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2﹣4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为________.
若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A. ﹣5 B. ﹣3 C. 3 D. 1
如图,是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,……,第(是正整数)个图案中由______个基础图形组成.(用含的代数式表示)
如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c=________ .
如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为( )
A. 40m B. 60m C. 120m D. 180m
若关于x的一元二次方程有实数根,则实数k的取值范围为
A. ,且 B. ,且
C. D.
如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有( )
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若 = ,则S△EDH=13S△CFH .
A. 1个 B. 2个 C. 3个 D. 4个
如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC的延长线上,连接AD,过B作BE⊥AD,垂足为E,交AC于点F,连接CE.
(1)求证:△BCF≌△ACD.
(2)猜想∠BEC的度数,并说明理由;
(3)探究线段AE,BE,CE之间满足的等量关系,并说明理由.