题目内容

已知:如图,正方形ABCD,对角线AC、BD相交于O,Q为线段DB上的一点,∠MQN=90°,点M、N分别在直线BC、DC上,
(1)如图1,当Q为线段OD的中点时,求证:DN+BM=BC;
(2)如图2,当Q为线段OB的中点,点N在CD的延长线上时,则线段DN、BM、BC的数量关系为______;
(3)在(2)的条件下,连接MN,交AD、BD于点E、F,若MB:MC=3:1,NQ=,求EF的长.

【答案】分析:(1)如图1,过Q点作QP⊥BD交DC于P,然后根据正方形的性质证明△QPN∽△QBM,就可以得出结论;
(2)如图2,过Q点作QH⊥BD交BC于H,通过证明△QHM∽△QDN,由相似三角形的性质就可以得出结论;
(3)由条件设CM=x,MB=3x,就用CB=4x,得出BH=2x,由(2)相似的性质可以求出MQ的值,再根据勾股定理就可以求出MN的值,可以表示出ND,由△NDE∽△NCM就可以求出NE,也可以表示出DE,最后由△DEF∽△BMF而求出结论.
解答:解:(1)如图1,过Q点作QP⊥BD交DC于P,
∴∠PQB=90°.
∵∠MQN=90°,
∴∠NQP=∠MQB,
∵四边形ABCD是正方形,
∴CD=CB,∠BDC=∠DBC=45°.DO=BO
∴∠DPQ=45°,DQ=PQ.
∴∠DPQ=∠DBC,
∴△QPN∽△QBM,

∵Q是OD的中点,且PQ⊥BD,
∴DO=2DQ,DP=DC
∴BQ=3DQ.DN+NP=BC,
∴BQ=3PQ,

∴NP=BM.
∴DN+BM=BC.

(2)如图2,过Q点作QH⊥BD交BC于H,
∴∠BQH=∠DQH=90°,
∴∠BHQ=45°.
∵∠COB=45°,
∴QH∥OC.
∵Q是OB的中点,
∴BH=CH=BC.
∵∠NQM=90°,
∴∠NQD=∠MQH,
∵∠QND+∠NQD=45°,∠MQH+∠QMH=45°
∴∠QND=∠QMH,
∴△QHM∽△QDN,

∴HM=ND,
∵BM-HM=HB,

故答案为:

(3)∵MB:MC=3:1,设CM=x,
∴MB=3x,
∴CB=CD=4x,
∴PB=2x,
∴PM=x.
∵HM=ND,
∴ND=3x,
∴CN=7x
∵四边形ABCD是正方形,
∴ED∥BC,
∴△NDE∽△NCM,△DEF∽△BMF,


∴DE=

∵NQ=
∴QM=3
在Rt△MNQ中,由勾股定理得:
MN==15

∴NE=
∴EM=
设EF=a,则FM=7a,
∴a+7a=
∴a=
点评:本题是一道相似的综合试题,考查了正方形的性质的运用,相似三角形的判定于性质的运用,勾股定理的运用及平行线等分线段定理的运用,在解答时利用三角形相似的性质求出线段的比是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网