题目内容
分析:观察图形,发现:黑色梯形的高总是2;根据等腰直角三角形的性质,分别求得黑色梯形的两底和依次是4,12,20,…即依次多8.再进一步根据梯形的面积公式进行计算.
解答:解:∵∠AOB=45°,
∴图形中三角形都是等腰直角三角形,
∴S1=
(1+3)×2=4;
Sn=
×2×[4+8(n-1)]=8n-4.
故选A.
∴图形中三角形都是等腰直角三角形,
∴S1=
| 1 |
| 2 |
Sn=
| 1 |
| 2 |
故选A.
点评:本题考查了图形的变化类问题,解决此题的关键是能够结合图形,根据等腰直角三角形的性质,找到梯形的上下底的和的规律.
练习册系列答案
相关题目
| n | 1 | 2 | 3 | … |
| Sn | … |
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.