题目内容
若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是__.
在某一时刻测得米高的竹竿的影长为米,同时测得一棵树的影长,落在地面上的影长为米,落在墙上的影长为米,则这棵树的高度为( )
A. 米 B. 米 C. 米 D. 米
计算:①________; ②________.
如图,抛物线y=﹣x2+bx+c(b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
②试求出此旋转过程中,(NA+NB)的最小值.
解下列方程:
(1)x2﹣2x﹣2=0;
(2)(x﹣1)(x﹣3)=8.
把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )
A. y=﹣2(x﹣1)2+6 B. y=﹣2(x﹣1)2﹣6
C. y=﹣2(x+1)2+6 D. y=﹣2(x+1)2﹣6
如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(﹣2,0)和B(B在A右侧),交y轴于点C,直线y=经过点B,交y轴于点D,且D为OC中点.
(1)求抛物线的解析式;
(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,线段PH的长度是d,求d与t的函数关系式;
(3)在(2)的条件下,当d=时,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求点Q的坐标.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为( )
A. 193 B. 194 C. 195 D. 196
如图,正九边形中,,那么的长是________.