题目内容
如图,在△ABC中,DE∥BC,且AD:DB=1:1,那么S△ADE:S△ABC等于________.
1:4
分析:由DE∥BC,可得△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,即可求得S△ADE:S△ABC的值.
解答:∵DE∥BC,
∴△ADE∽△ABC,
∵AD:DB=1:1,
∴AD:AB=1:2,
∴S△ADE:S△ABC=1:4.
故答案为:1:4.
点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
分析:由DE∥BC,可得△ADE∽△ABC,然后根据相似三角形面积的比等于相似比的平方,即可求得S△ADE:S△ABC的值.
解答:∵DE∥BC,
∴△ADE∽△ABC,
∵AD:DB=1:1,
∴AD:AB=1:2,
∴S△ADE:S△ABC=1:4.
故答案为:1:4.
点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
练习册系列答案
相关题目