题目内容

在Rt△ABC中,∠C=90°,∠B=15°,AB的垂直平分线DE交BC于点E,交AB于点D,则∠EAC=________.

60°
分析:根据线段垂直平分线的性质得到EA=EB,则利用等腰三角形的性质得到∠EAD=∠B=15°,根据三角形外角性质有∠AEC=∠EAD+∠B=30°,然后根据三角形内角和定理可计算∠EAC.
解答:如图,
∵AB的垂直平分线为DE,
∴EA=EB,
∴∠EAD=∠B=15°,
∵∠AEC=∠EAD+∠B=30°,
∴∠EAC=90°-30°=60°.
故答案为60°.
点评:本题考查了线段垂直平分线的判定与性质:到线段两端点的距离相等的点在这条线段的垂直平分线上;线段垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网