题目内容

如图,已知AB是⊙O的直径.弦AC∥OD,求证:弧BD=弧CD.

证明:如图,连接OC.
∵OA=OC,
∴∠OAC=∠ACO.
∵AC∥OD,
∴∠OAC=∠BOD.
∴∠DOC=∠ACO.
∴∠BOD=∠COD.
∴弧BD=弧CD.
分析:欲证弧BD=弧CD,只需证明它们所对的圆心角相等,即∠BOD=∠COD.
点评:本题考查了平行线的性质,圆心角、弧、弦间的关系.要探讨两弧的关系,根据等弧对等圆心角可以转化为探讨所对的圆心角的关系,根据等弧所对的圆周角相等,可以再进一步转化为探讨所对的圆周角的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网