题目内容
如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)若△ABC的面积为40,BD边上的高为5, BD为多少?
已知:⊙O1和⊙O2的半径分别为10cm和4cm,圆心距为6cm,则⊙O1和⊙O2的位置关系是( )
A.外切 B.相离 C.相交 D.内切
(1)化简:﹣. (2)求直线y=2x﹣3与直线y=的交点坐标.
用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是 个.
若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )
A.3:2:1 B.1:2:3 C.3:4:5 D. 5:4:3
如图,将纸片△ABC沿DE折叠,点A落在点P处,已知 ∠1+∠2=100°,则∠A的大小等
于 度
如图,已知AC和BD相交于O点,AD∥BC,AD=BC,过O任作一条直线分别交AD、BC于点E、F,则下列结论:①OA=OC ②OE=OF ③AE=CF ④OB=OD,其中成立的个数是( )
A、1 B、2 C、3 D、4
某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量容量是______________,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
如图所示的几何体的俯视图是( )
A. B. C. D.