题目内容
如图所示,在△ABC中,∠ABC和∠ACB的角平分线相交于D,过点D作DE∥AB交BC于点E,DF∥AC交BC于点F,若BC=a,AB=b,AC=c,则△DEF的周长为________.
a
分析:根据角平分线的定义可得∠ABD=∠EBD,再根据两直线平行,内错角相等可得∠ABD=∠EDB,然后求出∠EBD=∠EDB,根据等角对等边的性质可得BE=DE,同理可得CF=DF,然后求出△DEF的周长=BC,代入数据即可得解.
解答:∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵DE∥AB,
∴∠ABD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
同理可得:CF=DF,
∴△DEF的周长=DE+EF+DF=BE+EF+CF=BC,
∵BC=a,
∴△DEF的周长=a.
故答案为:a.
点评:本题考查了等腰三角形的性质与判定,主要利用了角平分线的定义,平行线的性质,等角对等边的性质,是基础题,熟记性质是解题的关键.
分析:根据角平分线的定义可得∠ABD=∠EBD,再根据两直线平行,内错角相等可得∠ABD=∠EDB,然后求出∠EBD=∠EDB,根据等角对等边的性质可得BE=DE,同理可得CF=DF,然后求出△DEF的周长=BC,代入数据即可得解.
解答:∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵DE∥AB,
∴∠ABD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
同理可得:CF=DF,
∴△DEF的周长=DE+EF+DF=BE+EF+CF=BC,
∵BC=a,
∴△DEF的周长=a.
故答案为:a.
点评:本题考查了等腰三角形的性质与判定,主要利用了角平分线的定义,平行线的性质,等角对等边的性质,是基础题,熟记性质是解题的关键.
练习册系列答案
相关题目