题目内容

14、如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,交AB、AC于点M、N.求证:MN=BM+CN.
分析:由∠ABC、∠ACB的平分线相交于点O,∠MBO=∠OBC,∠OCN=∠OCB,利用两直线平行,内错角相等,利用等量代换可∠MBO=∠MOB,,∠NOC=∠OCN,,然后即可证明.
解答:解:∵∠ABC、∠ACB的平分线相交于点O,
∴∠MBO=∠OBC,∠OCN=∠OCB,
∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,
∴∠MBO=∠MOB,,∠NOC=∠OCN,
∴BM=MO,ON=CN,
∴MN=MO+ON,即MN=BM+CN.
点评:此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO△CNO是等腰三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网