题目内容
| A、3 | ||
| B、4 | ||
C、
| ||
D、
|
分析:连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长.
解答:
解:连接CE;
∵
=
+
,
∴∠BAE=∠EBC+∠BEC;
∵∠DCB=∠DCE+∠BCE,
由弦切角定理知:∠DCE=∠EBC,
由平行四边形的性质知:∠DCB=∠BAE,
∴∠BEC=∠BCE,即BC=BE=5,
∴AD=5;
由切割线定理知:DE=DC2÷DA=
,
故选D.
∵
| BCE |
| BC |
| CE |
∴∠BAE=∠EBC+∠BEC;
∵∠DCB=∠DCE+∠BCE,
由弦切角定理知:∠DCE=∠EBC,
由平行四边形的性质知:∠DCB=∠BAE,
∴∠BEC=∠BCE,即BC=BE=5,
∴AD=5;
由切割线定理知:DE=DC2÷DA=
| 16 |
| 5 |
故选D.
点评:此题主要考查了平行四边形的性质、切割线定理、弦切角定理以及圆周角定理的综合应用,能够判断出△BEC是等腰三角形,是解决此题的关键.
练习册系列答案
相关题目