题目内容
如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.
如图,已知在ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
(A)130° (B)150° (C)160° (D)170°
计算:(+π)0﹣2|1﹣sin30°|+()﹣1.
如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .
如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC等于:
A. 64° B. 58° C. 72° D. 55°
的值等于( )
A. 4 B. ﹣4 C. ±4 D.
如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2﹣∠3=90° B.∠1﹣∠2+∠3=90°
C.∠1+∠2+∠3=90° D.∠2+∠3﹣∠1=180°