题目内容

(2003•舟山)如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,则这条抛物线的关系式为   
【答案】分析:首先求出点B、C的坐标,再运用顶点坐标式求抛物线的表达式.
解答:解:当x=0时,y=2,所以B点的坐标是(0,2),
当y=0时,x=-2,所以A点的坐标是(-2,0),
∴OA=OB,∴∠OAB=45°,
∵∠ABC=90°,
∴∠OAB=∠OCB=45°,
∴OC=OB=OA=2,
∴C点的坐标是(2,0),
设抛物线的表达式为y=a(x-2)2,抛物线过B(0,2),
所以4a=2,a=
因此抛物线的解析式为:y=(x-2)2=x2-2x+2.
点评:本题考查待定系数法求抛物线的表达式和其他知识,涉及的内容范围广,难度比较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网