题目内容

在△ABC中,AB=AC=10,BC=16,求tanB的值.
分析:根据题意画出图形,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长,再根据锐角三角函数的定义即可求出tanB的值.
解答:精英家教网解:如图,等腰△ABC中,AB=AC=10,BC=16,
过A作AD⊥BC于D,则BD=8,
在Rt△ABD中,AB=10,BD=8,则
AD=
AB2-BD2
=
102-82
=6,
故tanB=
AD
BD
=
6
8
=
3
4
点评:本题考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理,涉及面较广,但难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网