题目内容
如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线与x轴交于点P,若△ABP的面积为
,试求点P的坐标.
由y=0得:2x+3=0,解得:x=-
(2)由B(0,3)、A(-
∵S△ABP=
∴
解得:AP=
设点P的坐标为(m,0),则m-(-
解得:m=1或-4,
∴P点坐标为(1,0)或(-4,0).
分析:(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;
(2)由B、A的坐标易求:OB=3,OA=
点评:本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);
与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
练习册系列答案
相关题目