题目内容
下列各组数可能是一个三角形的边长的是( )
A. 1,2,4 B. 4,5,9 C. 4,6,8 D. 5,5,11
如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为﹣1和﹣4,且抛物线过原点.
(1)求抛物线的解析式;
(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP,求的值.
不等式组的解集是( )
A. -1<x≤2 B. -2≤x<1 C. x<-1或x≥2 D. 2≤x<-1
在如图正方形网格的格点中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有__________个。
如图,把△ABC纸片的∠A沿DE折叠,点A落在四边形CBDE外,则∠1、∠2与∠A的关系是( )
A. ∠1+∠2=2∠A B. ∠2-∠A=2∠1
C. ∠2-∠1=2∠A D. ∠1+∠A=∠2
两个城镇与一条公路,一条河流的位置如图所示,某人要修建一避暑山庄,要求该山庄到的距离必须相等,到和的距离也必须相等,且在的内部,请画出该山庄的位置.(不要求写作法,保留作图痕迹.)
我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:
“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有人,则可以列方程组 ______________________ .
如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的解析式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
将抛物线y=﹣2x2向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
A. y=﹣2(x+1)2 B. y=﹣2(x+1)2+2 C. y=﹣2(x﹣1)2+2 D. y=﹣2(x﹣1)2+1