题目内容
用配方法解方程x2+x-5=0时,此方程变形正确的是
- A.

- B.

- C.(x+1)2=6
- D.(x+1)2=4
A
分析:根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.
解答:∵x2+x-5=0,
∴x2+x=5,
∴x2+x+
=5+
,
∴(x+
)2=
.
故选A.
点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
分析:根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.
解答:∵x2+x-5=0,
∴x2+x=5,
∴x2+x+
∴(x+
故选A.
点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解方程x2+mx+n=0时,此方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x-
| ||||
D、(x-
|