题目内容
| k |
| x |
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上是否存在一点E,使得S△BCE=
| 4 |
| 3 |
考点:反比例函数与一次函数的交点问题
专题:计算题
分析:(1)将A与B坐标代入一次函数与反比例解析式,消去b与k得到关于m与n的方程组,求出方程组的解得到m与n的值,进而求出k与b的值,确定出一次函数与反比例解析式;
(2)存在,理由为:对于一次函数,令y=0求出x的值,确定出C坐标,得到OC的长,三角形BCO的面积由OC为底,B纵坐标的绝对值为高求出,进而根据题意确定出三角形BCE的面积,三角形BCE以CE为底,B纵坐标的绝对值为高,求出CE的长,即可确定出E的坐标.
(2)存在,理由为:对于一次函数,令y=0求出x的值,确定出C坐标,得到OC的长,三角形BCO的面积由OC为底,B纵坐标的绝对值为高求出,进而根据题意确定出三角形BCE的面积,三角形BCE以CE为底,B纵坐标的绝对值为高,求出CE的长,即可确定出E的坐标.
解答:解:(1)将A(m,5),B(n,-2)分别代入一次函数得:m+b=5,n+b=-2,
整理得:m-n=7①;
将A(m,5),B(n,-2)分别代入反比例函数得:5=
,-2=
,
整理得:
=-
,即5m+2n=0②,
联立①②解得:m=2,n=-5,
∴k=10,b=3,
则一次函数解析式为y=x+3,反比例解析式为y=
;
(2)存在,
对于一次函数y=x+3,令y=0,得到x=-3,即OC=3,
∴S△BCO=
OC•|yB纵坐标|=3,
∴S△BCE=
S△BCO=4,即
CE•|yB纵坐标|=4,
∴CE=4,又C(-3,0),
则E(-7,0)或(1,0).
整理得:m-n=7①;
将A(m,5),B(n,-2)分别代入反比例函数得:5=
| k |
| m |
| k |
| n |
整理得:
| n |
| m |
| 5 |
| 2 |
联立①②解得:m=2,n=-5,
∴k=10,b=3,
则一次函数解析式为y=x+3,反比例解析式为y=
| 10 |
| x |
(2)存在,
对于一次函数y=x+3,令y=0,得到x=-3,即OC=3,
∴S△BCO=
| 1 |
| 2 |
∴S△BCE=
| 4 |
| 3 |
| 1 |
| 2 |
∴CE=4,又C(-3,0),
则E(-7,0)或(1,0).
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及三角形的面积求法,弄清题意是解本题的关键.
练习册系列答案
相关题目
已知a>b,则下列不等式一定成立的是( )
| A、ac>bc | ||||
| B、a(c2+1)>b(c2+1) | ||||
C、
| ||||
| D、-a>-b |
不等式组
的解集在数轴上表示正确的是( )
|
| A、 |
| B、 |
| C、 |
| D、 |