题目内容
要使分式有意义,x应满足的条件是( )
A. x>3 B. x=3 C. x<3 D. x≠3
如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
分解因式:ax4﹣9ay2=_____.
计算:(3﹣π)0﹣6cos30°+.
(2017黑龙江省龙东地区)已知关于x的分式方程的解是非负数,那么a的取值范围是( )
A. a>1 B. a≥1 C. a≥1且a≠9 D. a≤1
如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.
【答案】反比例函数: 一次函数:
【解析】先根据点A的坐标求出反比例函数的解析式,即可求得点B的坐标,再由点A、B的坐标根据待定系数法列出方程组即可求得以此函数解析式。
【题型】解答题【结束】22
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.
两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为_____.
【答案】
【解析】三角板DEF绕着点D的旋转过程中,四边形MCND为矩形时,根据矩形的性质可得MN=CD,此时线段MN的值最小,最小为,根据勾股定理求得AB=13,所以线段MN的最小值为.
点睛:本题考查了最短路径问题,根据题意得出四边形MCND为矩形时线段MN的值最小是解题的关键.
【题型】填空题【结束】15
解关于x的不等式组: ,其中a为参数.
某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.