题目内容
先化简,再求值: ÷(﹣),其中a=.
分解因式: =______________
如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
分式方程=1的解为( )
A. =-1 B. C. D. =2
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.
按下图所示的程序流程计算,若开始输入的值为,则最后输出的结果是____ .
若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )
A. ﹣4 B. 0 C. 1 D. 3
如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于______度.
工厂需要某一规格的纸箱x个.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由工厂租赁机器加工制作.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)请直接写出方案一的费用y1(元)和方案二的费用y2(元)关于x(个)的函数关系式;
(2)请你根据纸箱的个数选择哪种方案费用更少?并说明理由.