题目内容

精英家教网已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )
A、∠A与∠D互为余角B、∠A=∠2C、△ABC≌△CEDD、∠1=∠2
分析:先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.
解答:解:∵AC⊥CD,
∴∠1+∠2=90°,
∵∠B=90°,
∴∠1+∠A=90°,
∴∠A=∠2,
在△ABC和△CED中,
∠B=∠E=90°
∠A=∠2
AC=CD

∴△ABC≌△CED(AAS),
故B、C选项正确;
∵∠2+∠D=90°,
∴∠A+∠D=90°,
故A选项正确;
∵AC⊥CD,
∴∠ACD=90°,
∠1+∠2=90°,
故D选项错误.
故选D.
点评:本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网