题目内容

当m为整数时,关于x的方程(2m-1)x2-(2m+1)x+1=0是否有有理根?如果有,求出m的值;如果没有,请说明理由.
当m为整数时,关于x的方程(2m-1)x2-(2m+1)x+1=0没有有理根.理由如下:
①当m为整数时,假设关于x的方程(2m-1)x2-(2m+1)x+1=0有有理根,则要△=b2-4ac为完全平方数,而△=(2m+1)2-4(2m-1)=4m2-4m+5=(2m-1)2+4,
设△=n2(n为整数),即(2m-1)2+4=n2(n为整数),所以有(2m-1-n)(2m-1+n)=-4,
∵2m-1与n的奇偶性相同,并且m、n都是整数,所以
2m-1-n=2
2m-1+n=-2
2m-1-n=-2
2m-1+n=2

解得m=
1
2
或m=-
1
2
(都不合题意舍去).
②2m-1=0时,m=
1
2
(不合题意舍去).
所以当m为整数时,关于x的方程(2m-1)x2-(2m+1)x+1=0没有有理根.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网