题目内容
已知抛物线经过点A(3,0),B(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.
在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是(写出一种即可)
直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角(且),得到Rt△.
(1)如图,当边经过点B时,求旋转角的度数;
(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE.
①当时,设AD=,BE=,求与之间的函数解析式及自变量 的取值范围;
②当时,求AD的长.
一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为( )
A. B. C. D.
(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
如图,若将半径为6cm的圆形纸片剪去三分之一,剩下的部分围成一个圆锥的侧面,则围成圆锥的全面积为__________.
下列各组单项式中,不是同类项的一组是( )
A. x2y和2xy2 B. ﹣32和3 C. 3xy和﹣ D. 5x2y和﹣2yx2
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CD翻折,使点A落在AB上的点E处;再将边BC沿CF翻折,使点B落在CE的延长线上的点B′处,两条折痕与斜边AB分别交于点D、F,则线段B′F的长为( )
在Rt△ABC中,∠C=90°,∠B=70°,点D在边AB上,△ABC绕点D旋转后点B与点C重合,点C落在点C’,那么∠ACC’的度数是________.