题目内容
在△ABC中,点D,G分别在边AB,AC上,点E,F在边BC上.已知DG∥BC,DE∥FG,BE=DE,CF=FG,则∠A的度数
- A.等于90°
- B.等于80°
- C.等于72°
- D.条件不足,无法计算
A
分析:根据已知易证∠B=∠BDE,∠AGD=∠CGF,所以∠AGD+∠CGF+∠DGF=180,利用三角形外角的性质,知∠DGF+∠GDE=180°,所以∠B+∠C=90°,所以∠A的度数可求.
解答:∵BE=DE,
∴∠B=∠BDE,
∵四边形DEFG是平行四边形,
∴∠ADG=∠B,
∴∠ADG=∠BDE.
同理:∠AGD=∠CGF,
∵∠AGD+∠CGF+∠DGF=180°,∠DGF+∠GDE=180°,
∴∠AGD+∠CGF=∠GDE,
∵∠ADG+∠BDE+∠GDE=180°,
∴∠ADG+∠BDE+∠AGD+∠CGF=180°,
∴∠ADG+∠AGD=90°,
∴∠B+∠C=90°,
∴∠A=90°.
故选A.
点评:此题主要考查了平行四边形的性质,三角形的性质.在做这类题时要注意找到等角,等角替换由三角形的内角和定义最后求值.
分析:根据已知易证∠B=∠BDE,∠AGD=∠CGF,所以∠AGD+∠CGF+∠DGF=180,利用三角形外角的性质,知∠DGF+∠GDE=180°,所以∠B+∠C=90°,所以∠A的度数可求.
解答:∵BE=DE,
∴∠B=∠BDE,
∵四边形DEFG是平行四边形,
∴∠ADG=∠B,
∴∠ADG=∠BDE.
同理:∠AGD=∠CGF,
∵∠AGD+∠CGF+∠DGF=180°,∠DGF+∠GDE=180°,
∴∠AGD+∠CGF=∠GDE,
∵∠ADG+∠BDE+∠GDE=180°,
∴∠ADG+∠BDE+∠AGD+∠CGF=180°,
∴∠ADG+∠AGD=90°,
∴∠B+∠C=90°,
∴∠A=90°.
故选A.
点评:此题主要考查了平行四边形的性质,三角形的性质.在做这类题时要注意找到等角,等角替换由三角形的内角和定义最后求值.
练习册系列答案
相关题目