题目内容

如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:连接BD.AB是直径,则∠ADB=90°,由弦切角定理知∠CDB=∠BCM=60°,∠CDA=150°.
再由圆内接四边形的对角互补可求∠CBA=30°,根据三角函数的求法可知tan∠ABC=
解答:解:连接BD.
AB是直径,则∠ADB=90°,
∴∠CDB=∠BCM=60°.
∴∠CDA=∠CDB+∠ADB=150°.
∵∠CBA=180°-∠CDA=30°,
∴tan∠ABC=tan30°=
故选B.
点评:本题利用了直径对的圆周角是直角,弦切角定理,圆内接四边形的性质求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网