题目内容
如果不等式组
|
分析:先求得不等式的解集,再根据不等式组
无解,求得m的取值范围,根据m的取值范围解不等式2x+2<mx+m的解集.
|
解答:解:
,
由①得,x≤m+1,
由②得,x≥2m-1,
∵不等式组
无解,∴m+1<2m-1,
解得m>2,
∴2x+2<mx+m,
(2-m)x<m-2,
∴x>-1,
故答案为x>-1.
|
由①得,x≤m+1,
由②得,x≥2m-1,
∵不等式组
|
解得m>2,
∴2x+2<mx+m,
(2-m)x<m-2,
∴x>-1,
故答案为x>-1.
点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
练习册系列答案
相关题目
如果不等式组
有解,那么m的取值范围是( )
|
| A、m>7 | B、m≥7 |
| C、m<7 | D、m≤7 |