题目内容
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
分析:(1)由相似三角形的判定得出△DEB∽△ACB,从而得出角的关系,再由AD=CD,得出BD与AB的关系,即可求的结论.
(2)此题分两种情况求解,△BME∽△CNE或△BME∽△ENC,根据相似三角形的性质即可求得.
(2)此题分两种情况求解,△BME∽△CNE或△BME∽△ENC,根据相似三角形的性质即可求得.
解答:(1)证明:∵AD=CD,
∴∠DAC=∠DCA,
∴∠BDC=2∠DAC,
∵DE是∠BDC的平分线,
∴∠BDC=2∠BDE,
∴∠DAC=∠BDE,
∴DE∥AC,
(2)解:(I)当△BME∽△CNE时,得∠MBE=∠NCE,
∴BD=DC,
∵DE平分∠BDC,
∴DE⊥BC,BE=EC,
又∠ACB=90°,
∴DE∥AC,
∴
=
即BD=
AB=
=5,
∴AD=5,
(II)当△BME∽△ENC时,得∠EBM=∠CEN,
∴EN∥BD,
∵EN⊥CD,
∴BD⊥CD即CD是△ABC斜边上的高,
由三角形面积公式得AB•CD=AC•BC,
∴CD=
,
∴AD=
=
,
综上,当AD=5或
时,△BME与△CNE相似.
∴∠DAC=∠DCA,
∴∠BDC=2∠DAC,
∵DE是∠BDC的平分线,
∴∠BDC=2∠BDE,
∴∠DAC=∠BDE,
∴DE∥AC,
(2)解:(I)当△BME∽△CNE时,得∠MBE=∠NCE,
∴BD=DC,
∵DE平分∠BDC,
∴DE⊥BC,BE=EC,
又∠ACB=90°,
∴DE∥AC,
∴
| BE |
| BC |
| BD |
| AB |
| 1 |
| 2 |
| 1 |
| 2 |
| AC2+BC2 |
∴AD=5,
(II)当△BME∽△ENC时,得∠EBM=∠CEN,
∴EN∥BD,
∵EN⊥CD,
∴BD⊥CD即CD是△ABC斜边上的高,
由三角形面积公式得AB•CD=AC•BC,
∴CD=
| 24 |
| 5 |
∴AD=
| AC2-CD2 |
| 18 |
| 5 |
综上,当AD=5或
| 18 |
| 5 |
点评:此题考查了相似三角形的判定与性质、角平分线的性质和勾股定理,解题时要注意数形结合思想的应用,要注意不规则图形的面积的求解方法.
练习册系列答案
相关题目