搜索
题目内容
如图,AD和AE分别是△ABC的中线和高,且BD=3,AE=2,则S
△ABC
=
.
试题答案
相关练习册答案
分析:
由中线的定义可求得BC的长,即可求得面积.
解答:
解:∵AD是△ABC的中线,BD=3,∴BC=6,又∵高AE=2,∴S
△ABC
=
1
2
•BC•AE=
1
2
×6×2=6.
点评:
三角形的面积等于底与高乘积的一半.
练习册系列答案
金牌夺冠一卷OK系列答案
核心360小学生赢在100系列答案
期末闯关100分系列答案
家校导学系列答案
新每课一练系列答案
开心蛙状元作业系列答案
黄冈海淀大考卷单元期末冲刺100分系列答案
课时掌控随堂练习系列答案
课堂新动态系列答案
一课一练一本通系列答案
相关题目
25、在图1-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例:
当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究:
(1)正方形FGCH的面积是
a
2
+b
2
;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.
联想拓展:
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移;当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.
【
观察发现
】
(1)如图1,若点A、B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.
作法如下:作点B关于直线l的对称点B′,连接AB′,与直线l的交点就是所求的点P.
(2)如图2,在等边三角形ABC中,AB=4,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
作法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
2
3
2
3
.
【
实践运用
】
如图3,菱形ABCD中,对角线AC、BD分别为6和8,M、N分别是边BC、CD的中点,若点P是BD上的动点,则MP+PN的最小值是
5
5
.
【
拓展延伸
】
(1)如图4,正方形ABCD的边长为5,∠DAC的平分线交DC于点E.若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是
5
2
2
5
2
2
;
(2)如图5,在四边形ABCD的对角线BD上找一点P,使∠APB=∠CPB.保留画图痕迹,并简要写出画法.
如图,AD、AE分别为△ABC的高和角平分线,∠B=35°,∠C=45°,求∠DAE的度数.
如图,AD、AE分别为△ABC的高和角平分线,∠B=35°,∠C=45°,求∠DAE的度数.
如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为( )。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案