题目内容

如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短,则EP+BP的最短距离是
5
5
分析:连接DE,交直线AC于点P,根据四边形ABCD是正方形可知B、D关于直线AC对称,所以DE的长即为EP+BP的最短距离,再根据勾股定理即可得出结论.
解答:解:连接DE,交直线AC于点P,
∵四边形ABCD是正方形,
∴B、D关于直线AC对称,
∴DE的长即为EP+BP的最短距离,
∴DE=
AD2+AE2
=
42+32
=5.
故答案为:5.
点评:本题考查的是轴对称-最短路线问题,熟知两点之间线段最短是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网