题目内容
5
5
.分析:连接DE,交直线AC于点P,根据四边形ABCD是正方形可知B、D关于直线AC对称,所以DE的长即为EP+BP的最短距离,再根据勾股定理即可得出结论.
解答:
解:连接DE,交直线AC于点P,
∵四边形ABCD是正方形,
∴B、D关于直线AC对称,
∴DE的长即为EP+BP的最短距离,
∴DE=
=
=5.
故答案为:5.
∵四边形ABCD是正方形,
∴B、D关于直线AC对称,
∴DE的长即为EP+BP的最短距离,
∴DE=
| AD2+AE2 |
| 42+32 |
故答案为:5.
点评:本题考查的是轴对称-最短路线问题,熟知两点之间线段最短是解答此题的关键.
练习册系列答案
相关题目