题目内容
已知Rt△ABC,∠C=90°,AB=13,AC=12,以AC所在直线为轴,将此三角形旋转1周,所得圆锥的侧面积是 .
如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•
(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;
(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:
①当D、M、Q三点在同一直线上时,求运动时间t;
②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.
直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为 .
如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,
(1)求证:CD是⊙O的切线.
(2)若⊙O的半径为3,AE=5,求∠DAE的正弦值.
解方程:
-3的倒数是 ,-3的绝对值是 .
(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.
化简2-的结果为 .
如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD,如果∠BAD=80°,则∠CBD的度数为 °.