题目内容

如果x2+x-1=0,那么代数式x4+x3+x-5的值为


  1. A.
    -4
  2. B.
    4
  3. C.
    -6
  4. D.
    6
A
分析:把代数式x4+x3+x-5整理成含(x2+x)的形式,观察特征发现最高次数是2,最低次数为1,前两项可提出x,得到关于这样类型的式子.
解答:∵x2+x-1=0,
∴x2+x=1,
原式=x2(x2+x)+x-5,
=x2+x-5,
=1-5,
=-4,
故选A.
点评:本题考查了提公因式法分解因式,整理成已知条件的形式,利用整体代入求解是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网