题目内容
分析:由AB与AC为圆O的切线,利用切线长定理得到AO为角平分线,且AB与OB垂直,AC与OC垂直,得到一对直角,再由同弧所对的圆心角等于圆周角的2倍,由∠D的度数求出∠BOC的度数,在四边形ABOC中,利用四边形的内角和定理即可求出∠BAC的度数,进而确定出∠BAO的度数.
解答:解:∵AB、AC分别切⊙O于B、C两点,
∴AO平分∠BAC,AB⊥OB,AC⊥OC,即∠ABO=∠ACO=90°,
∴∠BAO=∠CAO=
∠BAC,
∵∠D与∠BOC都对
,
∴∠BOC=2∠D=80°,
在四边形ABOC中,∠BAC=360°-90°-90°-80°=100°,
∴∠BAO=50°.
故选B
∴AO平分∠BAC,AB⊥OB,AC⊥OC,即∠ABO=∠ACO=90°,
∴∠BAO=∠CAO=
| 1 |
| 2 |
∵∠D与∠BOC都对
| BC |
∴∠BOC=2∠D=80°,
在四边形ABOC中,∠BAC=360°-90°-90°-80°=100°,
∴∠BAO=50°.
故选B
点评:此题考查了切线的性质,圆周角定理,切线长定理,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关题目