题目内容
【题目】已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.![]()
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y=
(k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标 , 写出符合题意的其中一条抛物线解析式 , 并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数 .
【答案】
(1)解:如图1,
![]()
当点A在x轴正半轴,点B在y轴负半轴上时,
∵OC=0D=1,
∴正方形ABCD的边长CD=
;∠OCD=∠ODC=45°,
当点A在x轴负半轴、点B在y轴正半轴上时,
设小正方形的边长为a,
易得CL=小正方形的边长=DK=LK,故3a=CD=
.
解得a=
,所以小正方形边长为
,
∴一次函数y=x+1图象的伴侣正方形的边长为
或 ![]()
(2)解:如图2,作DE,CF分别垂直于x、y轴,
![]()
易知△ADE≌△BAO≌△CBF
此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,
∴OF=BF+OB=2,
∴C点坐标为(2﹣m,2),
∴2m=2(2﹣m),解得m=1.
反比例函数的解析式为y=
.
(3)(3,4),y=﹣
x2+
,偶数
【解析】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合
①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣
x2+
;
②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,
③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在
④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y=
x2+
;
⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣
;
⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y=
x2+
;
∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,
∴所求出的任何抛物线的伴侣正方形个数为偶数.
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.