题目内容
计算:24÷(﹣2)3﹣3.
已知和时,多项式的值相等,且,则当时,多项式的值等于 。
已知反比例函数y=(k为常数).
(1)若点P1(,y1)和点P2(﹣,y2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y1和y2的大小;
(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M.若tan∠POM=2,PO=(O为坐标原点),求k的值,并直接写出不等式kx+>0的解集.
一次函数y=3x+m-2的图象不经过第二象限,则m的取值范围是( )
A. m≤2 B. m≤-2 C. m>2 D. m<2
问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为_____米.
如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为( )
A. 16 B. 8 C. 4 D. 2
在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_____.
(1)(﹣2a)3﹣(﹣a)•(3a)2
(2)(2a﹣3b)2﹣4a(a﹣2b)