题目内容
已知二元一次方程2x+3y﹣2=0,当x,y的值互为相反数时,x、y的值分别为( )
A. 2,﹣2 B. ﹣2,2 C. 3,﹣3 D. ﹣3,3
如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H.
(1)求证:DF=DH;
(2)若∠CFD=120°,求证:△DHG为等边三角形.
如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为( )
A. 正比例函数y=kx(k为常数,k≠0,x>0)
B. 一次函数y=kx+b(k,b为常数,kb≠0,x>0)
C. 反比例函数y=(k为常数,k≠0,x>0)
D. 二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.
小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )
A. 19 B. 18 C. 16 D. 15
如图,∠BAE=∠CAF=90°,EC、BF相交于点M,AE=AB,AC=AF,
求证:(1)EC=BF;
(2)EC⊥BF;
(3)若条件∠BAE=∠CAF=90°改为∠BAE=∠CAF=m°,则(1)、(2)两个结论还成立吗?结论(1)是否成立,结论(2)是否成立(只回答不写过程).
(1)(4a3b+6a2b2﹣ab3)÷2ab;
(2).
将下列多项式分解因式,结果中不含因式x﹣1的是( )
A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1
如图,表示阴影部分面积的代数式正确是( )
A. ab+bc B. ab﹣cd
C. c(b﹣d)+d(a﹣c) D. ad+c(b﹣d)