题目内容

将1~2001这2001个自然数依次写成一行,组成一个新的自然数,新的自然数除以9的余数为
 
分析:首先确定每相邻9个数之和必可被9整除,又由
2001
9
=222余3,即可得余数只能由后面3个数即199920002001组成的数决定,则可求得答案.
解答:解:设这相邻9个数第一个为n,则其他分别为n+1,n+2,一直到n+8,
∴n+n+1+n+2+…n+8=9n+36能被9整除,
∴每相邻9个数之和必可被9整除,
2001
9
=222余3,
∴余数只能由后面3个数即199920002001组成的数决定,
而199920002001除以9的余数为6,
∴新的自然数除以9的余数为6.
故答案为6.
点评:此题考查了带余数除法的知识.此题难度较大,解题的关键是抓住每相邻9个数之和必可被9整除,得到新的自然数除以9的余数只能由后面3个数即199920002001组成的数决定.
练习册系列答案
相关题目

现将连续自然数1至2009按图中的方式排列成一个长方形队列,再用正方形任意框出16个数。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1      2      3      4     5      6      7
8          9          10         11         12         13      14
15         16         17         18         19         20      21
22         23         24         25         26         27      28
·        ·        ·        ·        ·        ·     ·
·        ·        ·        ·        ·        ·     ·
·        ·        ·        ·        ·        ·     ·
1996      1997     1998     1999     2000     2001  2002
2003      2004     2005     2006     2007     2008  2009

 
 


(1)设任意一个这样的正方形框中的最小数为,请用的代数式表示该框中的16个数,然后填入右表中相应的空格处,并求出这16个数中的最小数和最大数,然后填入右表中相应的空格处,并求出这16个数的和。(用的代数式表示)
(2)在图中,要使一个正方形框出的16个数之和和分别等于832、2000、2008是否可能?若不可能,请说明理由;若可能,请求出该正方形框出的16个数中的最小数和最大数

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网