题目内容
| 1 |
| 2 |
分析:根据作图过程可知AO=BO,AP=BP,再有公共边OP=OP,可利用SSS定理证明△OAP≌△OBP.
解答:解:在△OAP和△OBP中,
,
∴△OAP≌△OBP(SSS),
故选:A.
|
∴△OAP≌△OBP(SSS),
故选:A.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
⑵如图3,⊙
内有一点
,请用尺规作图画出点
的反演点
;(保留画图痕迹,不必写画法).
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
的半径为
,另一个半径为
的⊙
,作射线
交⊙
于点
、
,点
、
关于⊙
的反演点分别是
、
,点
为⊙
上另一点,关于⊙
的反演点为
.求证:∠
=90°.
⑴如图2,⊙
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆